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Abstract

In this paper we provide some new insights into the microscopic interpretation
of the telegrapher’s and the reaction-telegrapher equations. We use the
framework of continuous-time random walks to derive the telegrapher’s
equation from two different perspectives reported before: the kinetic derivation
(KD) and the delayed random-walk derivation (DRWD). We analyze the
similarities and the differences between both derivations, paying special
attention to the case when a reaction process is also present in the system.
As a result, we are able to show that the equivalence between the KD and the
DRWD can break down when transport and reaction are coupled processes.
Also, this analysis allows us to elaborate on the specific role of relaxation
effects in reaction–diffusion processes.

PACS numbers: 05.70.−a, 05.40.−a, 82.20.−w, 05.40.Fb, 05.60.Cd

1. Introduction

The telegrapher’s equation (TE) owes its name to the original works by Lord Kelvin on the
propagation of an electric signal through a long cable [1]. He and some contemporaries found
that the evolution of the electric current I (x, t) through the cable was described by the equation

∂2I

∂t2
+ a1

∂I

∂t
+ a2I = a3

∂2I

∂x2
, (1)

where ai are constants which depend on the characteristic parameters of the corresponding
electric circuit. Since then, similar equations have arisen as a useful description for many
other physical and mathematical situations, specially in transport theory. If one denotes the
probability density ρ(x, t) that a particle is at position x at time t, then most authors in modern
literature refer to the form

∂2ρ

∂t2
+

1

τ

∂ρ

∂t
= c2 ∂2ρ

∂x2
(2)

1751-8113/09/075003+13$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/7/075003
http://stacks.iop.org/JPhysA/42/075003


J. Phys. A: Math. Theor. 42 (2009) 075003 D Campos and V Méndez

as the TE, with a a positive constant. This expression can be obtained straightforward from (1)
after an exponential transformation of the type ρ(x, t) ∼ I (a, t) exp(ξ t) and proper choice of
ξ as a function of the parameters τ and c. The fact that (2) behaves as a wave equation in the
limit t → 0 and as a diffusion equation for t → ∞, makes it a very convenient expression
in order to solve the problem of the infinite propagation speed of signals that one finds for
the classical diffusion equation [2, 3]. This idea has been deeply discussed and fruitfully
exploited, for example, in the framework of extended irreversible thermodynamics (EIT)
[4, 5]. Also, equation (2) has been proved of interest as an approximate solution for the
general transport equation [6], with additional potential applications in the field of relativistic
quantum mechanics [7], single-file flows [8], etc. A more comprehensive review on the
applications and the properties of the TE can be found in [2, 3, 9] and the references therein.

In many areas, with special focus on thermal conduction and thermodynamics, the TE is
usually related to the Maxwell–Cattaneo equation

J + τ
∂J

∂t
= −D

∂ρ

∂x
, (3)

where J (x, t) is defined as the flux of particles passing through x at time t, τ is the characteristic
relaxation time of the system and D is the diffusion coefficient. It is straightforward to see
that (2) arises naturally from (3) together with the continuity equation

∂ρ

∂t
= −∂J

∂x
(4)

and the identity D = c2/τ . So, the Maxwell–Cattaneo equation represents a generalization
of Fick’s law to the case where relaxation effects (characterized by the parameter τ ) are
considered, and so from this point of view the TE can also be interpreted as a generalized
diffusion equation. These ideas, however, have been questioned by some authors [10, 11].
The Maxwell–Cattaneo equation has been criticized because it is not frame invariant and so it
cannot be a valid conduction equation. This problem, however, has been seemingly resolved in
a recent paper by Christov and Jordan [12]. The extension of the TE to two or more dimensions
involves some formal problems too, as the solutions ρ(x, t) can become negative in that case
(due to this behavior, the TE has been said to be of the dangerous class as defined in [13]).
Some thermodynamical arguments can be used to show that negative values of ρ(x, t) are
prevented for the case of thermal conduction [14]. However, there is no direct generalization
of the 1D TE in higher dimensions [6, 15].

In the present paper, we will focus specially on the microscopic interpretations of the
1D equation (2) and the behavior of the reaction-telegrapher equation which results from
considering both reaction kinetics and transport effects. We will explore and compare two
different mathematical derivations that have been proposed before for the TE, the kinetic
derivation (KD) and the delayed random walk derivation (DRWD). The differences at the
microscopic level between these two derivations, as we shall see, become negligible at the
macroscopic level. However, the interplay between transport and an extra process (a reaction
process, in our case) can make these microscopic differences become apparent. If it happens,
the macroscopic analogy between the KD and the DRWD will break down. Here, we illustrate
these ideas for three different implementations of a reaction process and show that, for the
breakdown of the analogy between KD and DRWD, a necessary (but not sufficient) condition is
that the reaction and transport processes are coupled. The differences at the macroscopic level
between both derivations are shown by analyzing the traveling front solutions for each case. As
an interesting consequence, we find that for the three implementations of the reaction process
considered, the fronts exhibit different qualitative behaviors with respect to the parameter τ .
This allows us to review the discussion about the role of the relaxation time in the context of
the reaction-telegrapher equation (see, for example, [16]).
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2. Kinetic derivation versus delayed random walk derivation

Kinetic derivation. For this case, the dynamics of individual particles is assumed to follow a
Markov process in the velocity, which takes randomly only two possible values +v and −v. It
means that each particle moves with velocity +v during a certain sojourn time, then it switches
instantaneously to velocity −v, switches again to +v after a new sojourn time, and so on.
The corresponding distribution of random sojourn times is of the form ψ(t) = λ e−λt . This
microscopic dynamics was first described by Goldstein [17] and Kac [18] from the point of
view of a two-state model. Also, ideas from kinetic theory and the Maxwell equation have
been used to derive the TE [5].

Delayed Random Walk Derivation. Consider now that the particles jump from one place to
another on the 1D chain. If the random waiting times between consecutive jumps for each
particle are distributed according to an Erlang distribution of the type ψ(t) = tλ2 e−λt , then
in the limit of small jumps (diffusive approximation) the TE is also recovered. This idea has
recently been reviewed by one of us in the context of virus dynamics [19]. It is clear that the
two processes described above (for the KD and the DRWD) are different at a microscopic level.
However, the density of particles ρ(x, t) follows in both cases a TE. This is a consequence of
the similarities in the temporal statistics of the two processes, as we shall show below.

2.1. Continuous-time random walks: a unifying approach

The CTRW approach [20] brings the mathematical concept of semi-Markov process (developed
by Pyke in 1961 [21]) into the context of physical transport. Unlike classical random walks,
which are restricted to the Markov assumption, CTRWs can account for walks with memory
effects by a joint probability distribution function (PDF) ψ(x, t) for jump lengths and waiting
times between jumps. Let q(x, t) be the density of particles arriving at position x at time t;
then we can write from the CTRW theory

q(x, t) =
∫ t

0

∫ ∞

−∞
q(x − x ′, t − t ′)ψ(x ′, t ′) dx ′ dt ′ +

∫ ∞

−∞
ρ(x − x ′, 0)ψ(x ′, t) dx ′. (5)

The first term in the rhs represents the contribution from all particles jumping from position
x − x ′ to position x after a waiting time t ′, while the second term gives the contribution from
the initial density of particles. In order to find the form for the density of particles ρ(x, t), one
needs to consider the expression

ρ(x, t) =
∫ t

0
q(x, t − t ′)�(t ′) dt ′ + ρ(x, 0)�(t), (6)

where the function �(t) is the probability that a particle waits at least for a time t before
jumping to a new position. So, the following identity between ψ and � holds:

�(t) =
∫ ∞

t

∫ ∞

−∞
ψ(x ′, t ′) dx ′ dt ′. (7)

The set of equations (5)–(7) constitutes the jump version of the CTRW. In contrast with
that, it is also possible to derive a velocity version (this nomenclature is due to Zumofen and
Klafter [22]) in which the particles do not jump from one place to another but travel always
with a constant velocity whose value alternates between +v and −v. The equivalent to (5)–(7)
in the context of the velocity version reads

qv(x, t) =
∫ t

0

∫ ∞

−∞
qv(x − x ′, t − t ′)ψv(x

′, t ′) dx ′ dt ′ + ρv(x, 0) (8)
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ρv(x, t) =
∫ t

0

∫ ∞

−∞
qv(x − x ′, t − t ′)�v(x

′, t ′) dx ′ dt ′ (9)

�v(x, t) = δ(x − vt)

∫ ∞

t

∫ ∞

x

ψv(x
′, t ′) dx ′ dt ′, (10)

where we have introduced the subindex v for velocity and δ(·) represents the Dirac delta
function. The meaning of ρv(x, t) remains the same, i.e., it is density of particles’ present
(i.e., passing through) position x at time t, but now qv(x, t) represents the density of particles
that arrive at position x at time t and change their direction exactly at that moment. ψv(x, t)

is the PDF of sojourn times and distances between two consecutive changes in the direction
of the particles. Finally, �v(x, t) is the probability that the particle travels a distance x in the
same direction at least for a time t without changing direction. We will skip the details about
the specific meaning of (8)–(10), as these expressions have accurately been discussed in [22].
The solutions for the two versions of the model were also found there: closed equations for
the density of particles can be written in the Fourier–Laplace coordinates (k, s)

ρ̂(k, s) = �̃(s)

1 − ψ̂(k, s)
ρ̂(k, 0) (11)

ρ̂v(k, s) = �̂v(k, s)

1 − ψ̂v(k, s)
ρ̂v(k, 0), (12)

where˜and̂denote the Laplace and the Fourier–Laplace transforms, respectively.
In all our discussion above, we have tried to make it clear that the jump and the velocity

version of the CTRW fit very well with the microscopic underlying process that was described
in the DRWD and the KD, respectively. So that, the CTRW provides a unifying approach for
both derivations. The DRWD can be described by the jump version by choosing an appropriate
form of ψ(x, t), and the KD can be described by the velocity version just by finding ψv(x, t).
For the case of DRWD, we have already mentioned above that waiting times were distributed
according to ψ(t) = tλ2 e−λt , and the diffusive approximation for transport (i.e., short-distance
dispersal: σk � 1, with σ being the characteristic jump length) was considered. Then, if
waiting time and jump length distributions are assumed to be independent we find in the
Fourier–Laplace space

DRWD: ψ̂(k, s) � λ2

(s + λ)2
(1 − σ 2k2). (13)

Note that this approximation is only valid for small values of σk so that the distribution ψ̂(k, s)

is prevented from becoming negative; this has been discussed to be a reason for the TE to be
of the dangerous class [13].

For the KD, we need to consider the contribution from particles moving with velocity
+v and those moving with velocity −v. The PDF for the total distance covered and the total
sojourn time during this cycle are given by the convolution product

ψv(x, t) = [δ(x − vt)λ e−λt ] ∗ [δ(x + vt)λ e−λt ], (14)

where the first term corresponds to the joint PDF for the particle moving from the left to the
right, and the second one is for the backward movement. In the Fourier–Laplace space, (14)
simplifies to

KD: ψ̂v(k, s) = λ2

(s + λ)2 + v2k2
. (15)
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If we introduce expressions (13) and (15) into (11) and (12), respectively, the models can
easily be solved. By transforming back to the real coordinates (x, t), we obtain

DRWD:
1

2λ

∂2ρ

∂t2
+

∂ρ

∂t
= σ 2λ

2

∂2ρ

∂x2
(16)

KD:
1

2λ

∂2ρ

∂t2
+

∂ρ

∂t
= v2

2λ

∂2ρ

∂x2
. (17)

These results confirm the equivalence at the macroscopic level between the KD and the
DRWD, as in both cases we obtain a TE with the same form. The only difference appears
in the definition of the diffusion coefficient (Dj = σ 2λ/2 and Dv = v2/2λ) because of the
different parameterization used in each case.

If we integrate those PDFs over the whole spatial domain (which is equivalent to evaluating
the function at k = 0) we find that the distribution of waiting times is exactly the same in
both cases, so both processes follow the same temporal statistics. This is not surprising, as
the convolution of two exponential distributions λ e−λt as that considered in (14), is an Erlang
distribution tλ2 e−λt as that used for the DRWD. Then, we conclude that the microscopic
differences between the KD and the DRWD are only on the spatial statistics of jumps.

2.2. Connection to the Maxwell–Cattaneo equation

The Maxwell–Cattaneo equation can directly be obtained from the CTRW theory in the two
cases considered above. To show this, note that we can use the continuity equation (4) as a
definition for the fluxes J (x, t) or Jv(x, t). In the Fourier–Laplace space, that equation turns
into sρ̂(k, s) − ρ(k, 0) = −ikĴ (k, s). Then, it is easy to find from this expression together
with (11) and (12) that

Ĵ (k, s) = i

k

(
s − 1 − ψ̂(k, s)

�̃(s)

)
ρ̂(k, s) (18)

Ĵv(k, s) = i

k

(
s − 1 − ψ̂v(k, s)

�̂v(k, s)

)
ρ̂v(k, s). (19)

Note that this definition for J coincides with the formal definition for the flux of particles in a
CTRW that was first given by Compte and Metzler [23].

Now, we can introduce (18) and (19) into the Maxwell–Cattaneo equation (3), with
τ = 1/2λ. If we do that, we obtain that the necessary conditions for the PDF’s ψ and ψv, in
order that the Maxwell–Cattaneo equation is satisfied, read

ψ̂(k, s) = ψ̂(0, s) − �̃(s)Dj

s + 2λ
k2 (20)

ψ̂v(k, s) = ψ̂v(0, s) − �̂v(k, s)Dv

s + 2λ
k2. (21)

It is an easy mathematical exercise to prove that (13) and (15) satisfy these conditions,
respectively. So, it formally proves that the KD and the DRWD are compatible with the
existence of a Maxwell–Cattaneo equation for J .

All this discussion is of importance because the Maxwell–Cattaneo equation (3) has
been often interpreted as a first-order Taylor expansion (see for example [24]) of the
phenomenological constitutive equation

J (x, t + τ) = −D
∂ρ(x, t)

∂x

5



J. Phys. A: Math. Theor. 42 (2009) 075003 D Campos and V Méndez

that takes into account relaxation (delay) effects in the response of the system to local variations
in the density of particles ρ. According to that, it could be thought that the Maxwell–
Cattaneo equation can only be valid in the limit when τ is small. However, we have derived
above the Maxwell–Cattaneo equation in the framework of the CTRWs without imposing any
constriction on the relaxation parameter λ. It proves that the Maxwell–Cattaneo equation can
represent an exact formula (not just an approximation) for the relaxation response of a system
in some specific situations.

3. The effects of a reaction process

After introducing the CTRW framework for the analysis of the TE equation, we can now
explore the main idea of this paper, which is to find out if the equivalence between the KD
and the DRWD breaks down in the presence of a reaction process. Usually, one introduces
mathematically reaction processes by using the ideas from classical kinetics and the mass
action law (see case 1 below). However, different alternatives have been explored recently
[25–27]. In the present paper we will explore these cases:

Case 1. The reaction process is independent of transport. This corresponds to the standard
situation used in chemical kinetics.

Case 2. The reaction process takes place exactly when the particle lands in a new position
after a jump or, alternatively, when it changes direction in the velocity version. This case has
been studied in the framework of anomalous diffusion with reaction for CTRWs [25]. The
idea is that the reaction process is coupled to transport, so that every transport event (i.e., a
jump or a change in direction) yields a reaction event.

Case 3. The reaction process takes place after a distributed waiting time, provided that a jump
or a change in direction does not occur first. Similarly to the case of jumps, we can consider
that consecutive reaction events for a particle are separated by distributed waiting times. Then
we need to introduce two internal waiting times for each particle, one for motion and the other
for reaction. However, we have recently explored [26] the simplified case where those waiting
times are mutually exclusive, it is, if there is a jump (reaction event) then the waiting time for
reaction (jumps) starts from zero again. This may serve, for example, to explain situations
where it is necessary a direct contact with a fixed substrate in order that the particle becomes
activated and can react.

3.1. Traveling front solutions

In the following subsections, we will show that any of the three cases mentioned above leads in
the asymptotic regime t → ∞ to a hyperbolic reaction-telegrapher equation with the general
form

∂2ρ

∂t2
+ b1

∂ρ

∂t
= b2

∂2ρ

∂x2
+ b3ρ − F(ρ) − ∂F (ρ)

∂t
, (22)

where F(ρ) represents a nonlinear death term that is responsible for saturation effects in the
system (for example, for the case of a logistic growth F(p) ∼ p2). The properties of the
traveling solutions of (22) are widely known since many years ago (see, for example [28, 29])
and have been employed for modeling of forest fires [30], biological invasions [31], bistable
systems [32] and many other [16].

We summarize how to compute the front velocity for the hyperbolic reaction–diffusion
equation (22) by using the Hamilton–Jacobi method [33]. As we want to compute the velocity

6
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reached by the traveling front in the long-time and large-distance limit when it evolves from the
initial condition ρ(x, 0) = θ(−x) (θ(·) is the Heaviside function) it is convenient to introduce
the hyperbolic scaling x → x/ε and t → t/ε where ρε(x, t) = ρ(x/ε, t/ε). Defining the
auxiliary field Gε(x, t) = −ε ln ρε(x, t) one obtains(

∂Gε

∂t

)2

− ε
∂2Gε

∂t2
− b1

∂Gε

∂t
= b2

(
∂Gε

∂x

)2

− b2ε
∂2Gε

∂x2
+ b3

− eGε/εF (e−Gε/ε) − eGε/ε ∂F (e−Gε/ε)

∂t
. (23)

Introducing the definitions for the Hamiltonian and momentum as H = −∂tG and
p = ∂xG respectively, equation (23) becomes in the limit ε → 0

H 2 + b1H = b2p
2 + b3,

which can be rewritten in the form of the relativistic Hamilton–Jacobi equation of a particle
with mass M moving in the potential field V , that is, H =

√
M2c4 + c2p2 + V where c is the

speed of light. By comparing both equations we find

c =
√

b2, V = −b1/2, M =
√

b3 + b2
1

/
4

b2
. (24)

As in relativistic dynamics, c plays the role of an upper bound for the traveling front velocity.
The general form of the front velocity is computed from [33]

vf = min
p>0

H(p)

p
.

In consequence,

vf =

⎧⎪⎪⎨⎪⎪⎩
2

√
b2b3

b2
1 + 4b3

if b1 > 0

√
b2 if b1 < 0,

(25)

where we can distinguish between two regimes: usually [16], b1 > 0 corresponds to slow
reaction (the characteristic reaction time is larger than the characteristic waiting time) and
b1 < 0 to fast reaction (the characteristic reaction time is smaller than the characteristic
waiting time). It can be seen that the transition between both regimes at b1 = 0 is always
smooth, since dvf /db1

∣∣
b1=0 = 0. Next, we will derive the reaction–diffusion equations for

each case and will apply the analytical result (25) in order to compare the dynamics obtained.

3.1.1. Case 1. Equations (5) and (8) for the jump and the velocity version, respectively, turn
now into

DRWD : q(x, t) =
∫ t

0

∫ ∞

−∞
q(x − x ′, t − t ′)ψ(x ′, t ′) dx ′ dt ′

+
∫ ∞

−∞
ρ(x − x ′, 0)ψ(x ′, t) dx ′ +

r1

λ
ρ − F(ρ) (26)

KD: qv(x, t) =
∫ t

0

∫ ∞

−∞
qv(x − x ′, t − t ′)ψv(x

′, t ′) dx ′ dt ′

+ ρv(x, 0) +
r1

λ
ρv − F(ρv), (27)

7
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.

.

.

.

Figure 1. Comparison between the analytical expression for the velocity of traveling fronts in
(30) (solid line) and the results from numerical integration of (28) and (29) (circles). Dotted
lines indicate the transition point at r1 = 2λ. The values of the parameters used in the plot are
Dj,v = 1, λ = 0.5.

where r1 is the characteristic reaction rate and F(ρ) represents a nonlinear saturation term, as
in (22). The final expressions we find for the density of particles, inverting back to the real
space, are

DRWD:
∂2ρ

∂t2
+ (2λ − r1)

∂ρ

∂t
= λDj

∂2ρ

∂x2
+ 2λr1ρ − F(ρ) − ∂F (ρ)

∂t
(28)

KD:
∂2ρv

∂t2
+ (2λ − r1)

∂ρv

∂t
= λDv

∂2ρv

∂x2
+ 2λr1ρv − F(ρv) − ∂F (ρv)

∂t
, (29)

which have the same general form as (22). Note that the only difference between (28) and (29)
is in the definition of the diffusion coefficients so we conclude that for case 1 the equivalence
at the macroscopic level between the DRWD and the KD is still valid. Now, if we apply (25)
to these equations we can find the form of the front velocity vf

vf =

⎧⎪⎨⎪⎩2

√
2r1Dj,v

2 + r1/λ
if r1 < 2λ√

λDj,v if r1 > 2λ.

(30)

We show the behavior of the dimensionless velocity vf /
√

λDj,v as a function of r1/λ in
figure 1. There, we have chosen the values of the parameters so that Dj = Dv to make the
results from the KD and the DRWD coincide. The results obtained have been compared in the
plot with those obtained from the numerical integration of (28),(29) (circles), showing a perfect
agreement. We observe that there is always a transition at r1 = 2λ, so that for higher values of
the reaction rate r1 the front speed will not increase. This is due to the limitation imposed by
the TE on the finite propagation of signals: traveling fronts in the reaction-telegrapher equation
cannot propagate faster than the information signals in the TE. This important limitation has
been discussed in detail in previous works [4, 16, 32, 34].

8
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3.1.2. Case 2. Now, if the reaction can occur only at the moment of a jump in space (or
change in velocity), it is obvious that we have to introduce the reaction directly in the transport
term of the CTRW equations. So that, equations (5) and (8) become for this case

DRWD: q(x, t) = (1 + r2)

∫ t

0

∫ ∞

−∞
q(x − x ′, t − t ′)ψ(x ′, t ′) dx ′ dt ′

+
∫ ∞

−∞
ρ(x − x ′, 0)ψ(x ′, t) dx ′ − F(ρ) (31)

KD: qv(x, t) = (1 + r2)

∫ t

0

∫ ∞

−∞
qv(x − x ′, t − t ′)ψv(x

′, t ′) dx ′ dt ′

+ ρv(x, 0) − F(ρv), (32)

where r2 is now a (dimensionless) reaction parameter. We obtain the corresponding evolution
equations for ρ(x, t) and ρv(x, t):

DRWD:
∂2ρ

∂t2
+ 2λ

∂ρ

∂t
= (1 + r2)λDj

∂2ρ

∂x2
+ λ2r2ρ − F(ρ) − ∂F (ρ)

∂t
(33)

KD:
∂2ρv

∂t2
+ 2λ

∂ρv

∂t
= λDv

∂2ρv

∂x2
+ λ2r2ρv − F(ρv) − ∂F (ρv)

∂t
. (34)

At the same time, if we apply (25) to (33) and (34), we find the values for vf . Note that in this
case the coefficient b1 defined in (22) will always be positive, so we do not have any transition
in vf . The results obtained are

DRWD: vf = 2
√

r2λDj (35)

KD: vf =
√

λDv

(
1 − r2

1 + r2

)
. (36)

For case 2, equations (33) and (34) do not show the same dependence on the reaction
parameter r2. It implies that the equivalence between the KD and the DRWD breaks down
in this case as a consequence of the coupling between transport and reaction. In figure 2 we
show the different behavior of traveling fronts exhibited by the DRWD and the KD for this
case. It is specially interesting to observe the behavior for the DRWD: as the coefficient b2 in
equation (33) is proportional to the reaction parameter r2, then vf is unbounded for r2 → ∞.
This undesirable behavior contradicts the idea mentioned above that traveling fronts cannot
be faster than the information signals for the TE. In consequence, we can conclude that the
DRWD for case 2 does not represent apparently a convenient implementation of a reaction
process; this point will be addressed in detail in the Conclusions section.

3.1.3. Case 3. Finally, we show how the CTRW theory can be used to introduce the ideas
of a reaction process where the reaction events are separated by distributed waiting times. We
will call R(t) the PDF of waiting times for reaction, and R∗(t) the corresponding survival
probability (i.e., the probability that the particle has not reacted after a waiting time t). By
introducing these ideas into the CTRW framework, equations (5) and (6) for the jump version
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Figure 2. Comparison between the analytical expressions for the DRWD and the KD for the
velocity of traveling fronts (equations (35) and (36), solid lines) and the results from numerical
integration of (33) and (34) (symbols), respectively. The values of the parameters used in the plot
are the same as in figure 1.

become (see [26] for further details)

q(x, t) =
∫ t

0

∫ ∞

−∞
q(x − x ′, t − t ′)R∗(t ′)ψ(x ′, t ′) dx ′ dt ′

+ 1 + r3

∫ t

0
q(x, t − t ′)R(t ′)�(t ′) dt ′

+
∫ ∞

−∞
ρ(x − x ′, 0)R∗(t ′)ψ(x ′, t) dx ′

+ 1 + r3ρ(x, 0)R(t)�(t) − F(ρ) (37)

ρ(x, t) =
∫ t

0
q(x, t − t ′)R∗(t ′)�(t ′) dt ′ + ρ(x, 0)R∗(t)�(t), (38)

with r3 being the reaction parameter. For the velocity version we have, equivalently,

qv(x, t) =
∫ t

0

∫ ∞

−∞
qv(x − x ′, t − t ′)R∗(t ′)ψ(x ′, t ′) dx ′ dt ′

+ 1 + r3

∫ t

0

∫ ∞

−∞
qv(x − x ′, t − t ′)R(t ′)�(x ′, t ′) dx ′ dt ′

+
∫ ∞

−∞
ρv(x − x ′, 0)R∗(t)ψ(x ′, t) dx ′

+ 1 + r3

∫ ∞

−∞
ρv(x − x ′, 0)R(t)�(x ′, t) dx ′ − F(ρv) (39)

ρv(x, t) =
∫ t

0

∫ ∞

−∞
qv(x − x ′, t − t ′)R∗(t ′)�(x ′, t ′) dx ′ dt ′. (40)

Although the equations obtained are slightly more complex than those for the two previous
cases, they can still be transformed to the Fourier–Laplace space in order to solve the problem.
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Figure 3. Comparison between the analytical expression for the velocity of traveling fronts in
(43) (solid line) and the results from numerical integration of (41) and (42) (circles). Dotted lines
indicate the transition points situated at β/λ = 2/(r3 − 1) for those cases where r3 > 1. The
values of the parameters used in the plot are the same as in figure 1 plus those indicated for r3 in
the legend.

For simplicity, we will consider that consecutive reaction events are uncorrelated, so we choose
R(t) = β e−βt . It implies that we introduce a new characteristic rate β in the system.

For this specific case, the evolution equation for the density of particles in the real
coordinates x, y can only be found if we obviate the effect of initial conditions. It means
that we have to restrict ourselves to the asymptotic regime t → ∞, where the effects of these
initial conditions will be negligible. Using this approximation, we obtain from (37)–(38) and
(39)–(40)

∂2ρ

∂t2
+ [2λ + (1 − r3) β]

∂ρ

∂t
= λDj

∂2ρ

∂x2
+ βr3(2λ + β)ρ − F(ρ) − ∂F (ρ)

∂t
(41)

∂2ρv

∂t2
+ [2λ + (1 − r3) β]

∂ρv

∂t
= λDv

∂2ρv

∂x2
+ βr3(2λ + β)ρv − F(ρv) − ∂F (ρv)

∂t
(42)

for DRWD and KD, respectively. By comparing (41) and (42), we observe that the equivalence
between the DRWD and the KD holds as in case 1, albeit in this case we again have coupled
effects between transport and reaction (because of the assumption of mutually exclusive
waiting times). So that, we conclude that the existence of couplings between reaction and
transport is a necessary (but not sufficient) condition for the breakdown of this equivalence.

Finally, we also show the result for the speed of traveling fronts, which reads in this case

vf =

⎧⎪⎨⎪⎩
√

λDj,v if β/λ < 2
r3−1 and r3 > 1

2

√
r3β(2 + β/λ)Dj,v

2 + (1 + r3)β/λ
otherwise.

(43)

The plot of vf as a function of the reaction parameter r3 would be very similar to that shown in
figure 1 for case 1. Instead, in order to stress the differences between the two cases we show
in figure 3 the form of vf /

√
λDj,v as a function of the dimensionless parameter β/λ. There

11
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it can be clearly seen that for r3 > 1 there is a transition (at β/λ = 2/(r3 − 1), according
to (43)) to the upper bound of the velocity, while for r3 < 1 the velocity always increases
asymptotically.

4. Conclusions

The works and discussions about the telegrapher’s equation and the Maxwell–Cattaneo
equation have extended for many years and they represent nowadays a classical topic in
thermodynamics and transport theory. However, in this paper we have tried to show that there
are still some aspects about these equations that are worth exploring. Specifically, we have
tried to focus on the idea that different derivations of the telegrapher’s equation correspond
actually to different processes at a microscopic level. So that, we have tried to exploit these
differences in order to see if the macroscopic equivalence between both cases breaks down
in the presence of a growth (reaction) process. As a result of our analysis, some interesting
conclusions can be mentioned.

(i) We have shown that in the context of the kinetic derivation and the delayed random
walk derivation, the Maxwell–Cattaneo equation can be derived without imposing any
constraints on the value of the characteristic relaxation time of the system, denoted by τ

in (3). This is in contrast with previous works that seem to suggest that the Maxwell–
Cattaneo equation is just an approximated result for small relaxation effects (i.e., τ

small).
(ii) It is possible to derive a reaction-telegrapher equation where the equivalence between

the kinetic derivation and the delayed random walk derivation breaks down. It can only
occur in some situations (case 2 above) where transport and reaction are coupled, so that
the microscopic differences in the transport dynamics are magnified by the effects of
reaction.

(iii) The unbounded behavior of the front speed for the delayed random walk derivation (see
figure 2) means that the finite propagation of signals imposed by the telegrapher’s equation
does not represent an upper bound for traveling fronts in that case. So, we have reported
a case where the theoretical advantages of the telegrapher’s equation, over the classical
diffusion equation, are destroyed by the effect of an extra (reaction) process. Whether
that situation reflects an unphysical behavior or not is still an open question.

(iv) We have also shown the different roles of the relaxation time on the reaction-telegrapher
equations derived for cases 1–3. While the transition from a monotone front speed
to a constant speed occur at a fixed value of the reaction parameter in case 1 (see
equation (30)), the same transition does not exist in case 2 or only exists for a certain range
of values in case 3. The fact that different microscopic implementations of the reaction
process lead to a qualitatively different macroscopic behavior for traveling fronts makes
evident the lack of universality in reaction–diffusion processes with relaxation effects.
So, our work shows that the problem of how memory effects should be introduced in
reaction–diffusion systems, which has been the focus of several recent works [26, 27],
appears even in the case of the well-known telegrapher’s equation.
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